

Outlook of lignocellulosic biomass and relevant policies for a bio-based economy in 2030

What types of lignocellulosic biomass are included in the analysis?

Lignocellulosic biomass in this analysis includes:

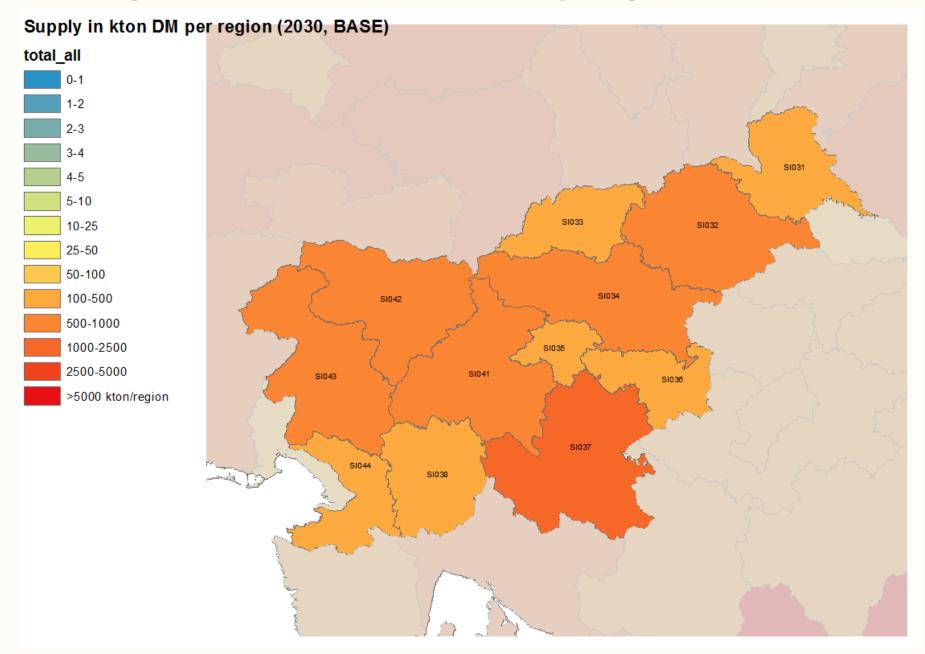
- Forest biomass from primary forestry productions (fellings), primary field residues and secondary forest industry residues;
- Agricultural biomass from primary field activities;
- Biowastes and post consumer wood;
- Dedicated perennial crops.

Context

S2Biom provides data and evidence relating to:

- indigenous, sustainable lignocellulosic biomass
 feedstock potentials at national/regional/local levels;
- resource and energy efficient value chains which are expected to be implemented at scale by 2030;
- policies that can facilitate uptake of indigenous lignocellulosic biomass.

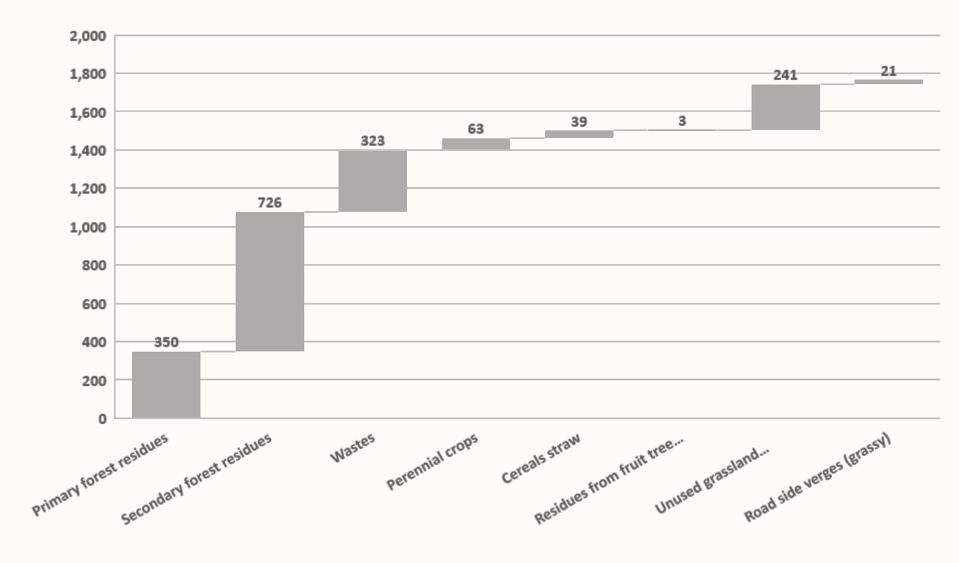
Key questions, addressed by S2Biom


- Where is biomass found?
- What is estimated sustainable potential by 2030?
- What are the sustainable potentials by biomass type and where can they be found?
- Which value chains have high resource and energy efficiency?
- What is the national policy landscape?
- What future policy interventions can be considered based on good practice?

Where is biomass found?

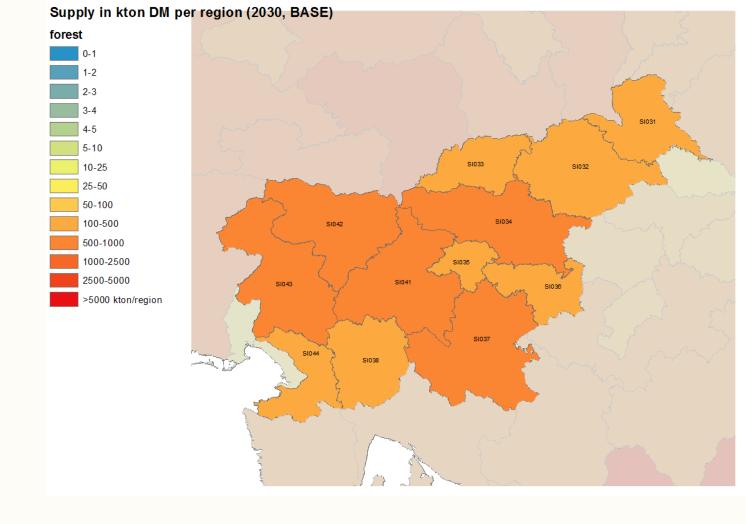
The following slide presents a map with total sustainable*
 occurrence of lignocellulosic biomass by region, measured in
 '000 dry tonnes per year

^{*} The estimated potentials include sustainability criteria as required by the Renewable Energy Directive.

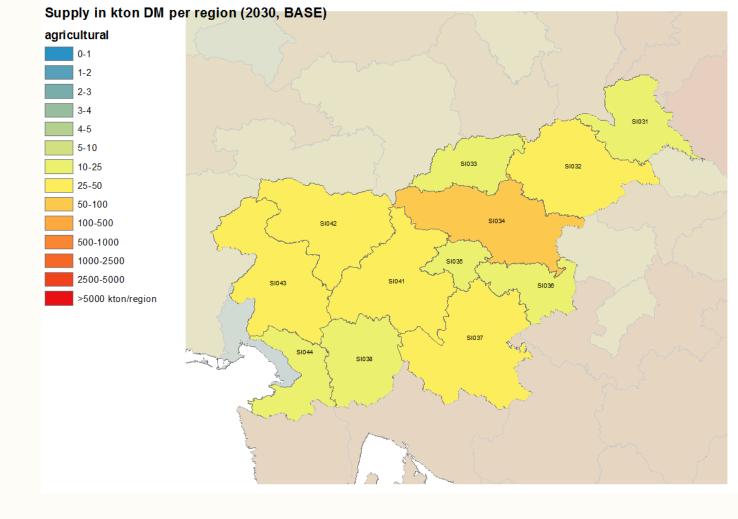

Total lignocellulosic biomass by region

What is the availability per biomass type?

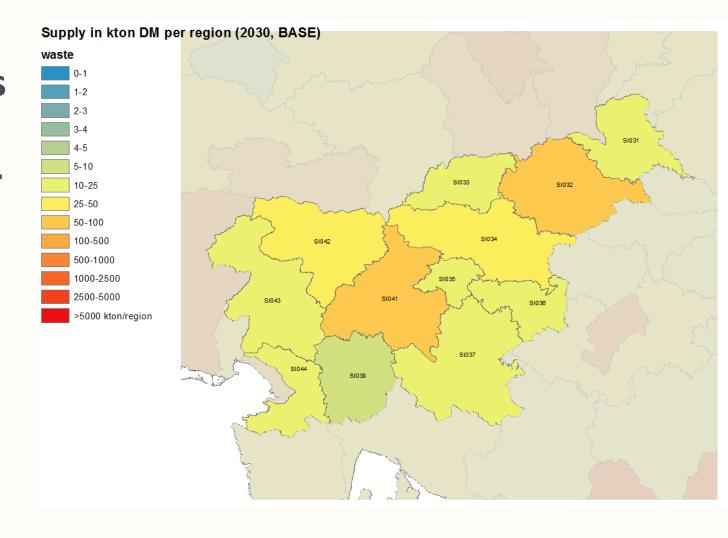
- Sustainable potential from residues, dedicated perennial crops, biowastes and post consumer wood totals 1.8m dry tonnes / year.
- Primary forestry production accounts for an additional 4.2m dry tonnes / year.
- The following slide presents a graph of potential available lignocellulosic biomass by source, excluding primary forestry production.


Lignocellulosic biomass availability by source by 2030 ('000 dry tonnes)

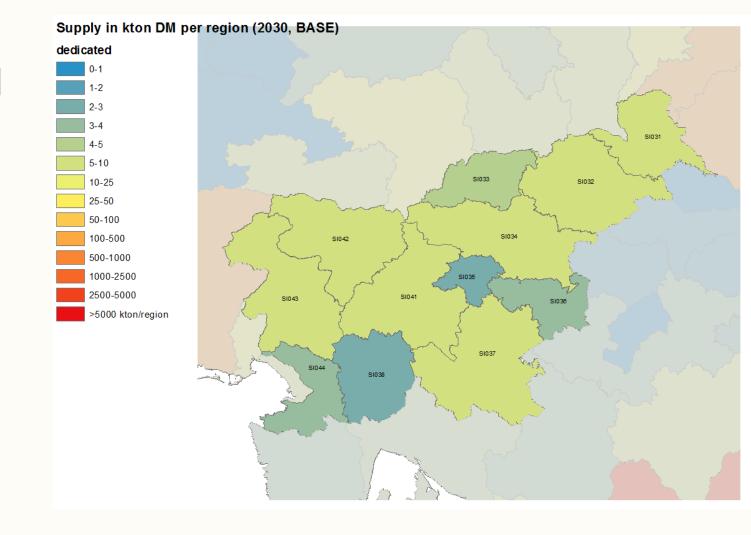
What are the sustainable potentials by biomass type and where can they be found?


- The following slides present maps of estimated sustainable potential lignocellulosic biomass by region and by main source, namely:
 - Forest (primary forestry production, field residues and secondary agricultural residues)
 - Agriculture (primary field residues and tree prunings)
 - Biowastes and post consumer wood
 - Dedicated perennial crops

Forest


Estimated sustainable potential can reach up to 5.3m dry tonnes/ year

Agriculture


■Estimated sustainable potential can reach up to 0.7m dry tonnes/ year

Biowastes and post consumer wood

■Estimated sustainable potential can reach up to 0.32m dry tonnes/ year

Dedicated perennial crops

■Estimated sustainable potential can reach up to 63,000 dry tonnes/ year

Which value chains have high resource and energy efficiency?

- The following show value chains with relatively high efficiency in the following aspects
 - Energy efficiency
 - Greenhouse gas emissions
 - Air quality
 - Technological maturity

Value chains: forest and agriculture

	Energy efficiency	Greenhouse gases	Air quality	Technological maturity		
	Combustion at small scale including households					
Strength	High conversion efficiency with modern technology	Low fossil input in the value chain	-	Fully commercial, long experience		
Weakness	Older stoves have low conversion efficiency. Heat not always efficiently used.		High emissions from older wood stoves.			
	Combustion at small-medium scale including buildings					
Strength	High conversion efficiency	Low fossil input in the chain	-	Fully commercial, long experience		
Weakness	_	-	Emissions better than smaller scale but higher than natural gas.	-		
	Combustion at medium scale, heat led					
Strength	High conversion efficiency	Low input of fossil fuels; high GHG savings especially for Combined Heat and Power	Better control options for emissions	Fully commercial		
Weakness	-	-	Higher emissions than natural gas combustion.	-		
	Biochemical - lignocell. hydrolysis and fermentation					
Strength	-	High GHG savings in case of process integration and limited fossil input.	Ethanol has low emissions as transport fuel.			
Weakness	Around 50% conversion efficiency	_		Pre-commercial phase		

Value chains: wastes

	Energy efficiency	Greenhouse gases	Air quality	Technological maturity		
	Waste incineration and energy recovery					
Strength	·	High GHG benefit, particularly compared to landfill (avoided methane emissions); energy recovery substitutes fossil fuels	If landfill is avoided, lower air emissions.	Fully commercial		
Weakness	Relatively low net energy output; auxiliary fuel may be required due to low calorific value of fuel	_	Issues in terms of emissions of waste incineration. Emission control is circa one third of project cost.	-		
	Combustion at medium scale, heat driven)					
Strength	case of heat only; 65-85%	Low input of fossil fuels; especially in case of CHP GHG savings can be high	Better control options for PM emissions compared to small scale installations.	Fully commercial		
Weakness	-	-	Still higher PM emissions than natural gas combustion.	-		
	Gasification & CHP at medium scale - heat driven					
Strength	depending on heat only or CHP	Low/no input of fossil fuels; especially in case of CHP GHG savings can be high	Low emissions of gas engine or turbine	(Early) commercial		

What is the national policy landscape?

- The following slides provide diagrams to illustrate how existing policies / measures support one or more of the following:
 - Biomass supply
 - Logistics
 - Conversion
 - Distribution
 - Fnd use
- Policies / measures are categorised as: (1) Regulation, (2)
 Financing and (3) Information

^{*} Policy mapping and respective recommendations are the result of intensive review but as the field is dynamic the authors appreciate there may be missing elements.

Current policy: forest

Biomass Supply

Logistics

SI Forest Act

SL National Forest Plan

SL_DGPP: Environmental requirements

SL-RDP: Investment subsidies

Conversion

Distribution

End Use

SL-NEEAP: Energy Efficiency Action Plan

SL-NREAP: Renewable Energy Action Plan

SL-ReNEP: Renewable Energy Action Plan

SL- EA: Requirements, Substitution Obligation, Permitting, Zoning

SL_DESFC: Subsidies

Decree on Renewable Electricity support & SL- EPA: Feed in tariffs

Excise Duties Act

Regulations Financing

Current policy: agriculture & dedicated crops

Biomass Supply

Logistics

CAP: Slovenian Rural Development Programmes

Conversion

Distribution

End Use

SL-NEEAP: Energy Efficiency Action Plan

SL-NREAP: Renewable Energy Action Plan

SL-ReNEP: Renewable Energy Action Plan

SL- EA: Requirements, Substitution Obligation, Permitting, Zoning

Act on Sustainable Biofuels

SL- RTFO: Substitution Obligation

SL_DESFC: Subsidies

Decree on Renewable Electricity support & SL- EPA: Feed in tariffs

Excise Duties Act

Regulations Financing

Current policy: wastes

Biomass Supply

Logistics

SL-DOW: Requirements for waste energy

SL_DRNHW: Requirements for waste energy

SL_OPW: Strategy for wastes

Conversion

Distribution

End Use

SL-NEEAP: Energy Efficiency Action Plan

SL-NREAP: Renewable Energy Action Plan

SL-ReNEP: Renewable Energy Action Plan

SL- EA: Requirements, Substitution Obligation, Permitting, Zoning

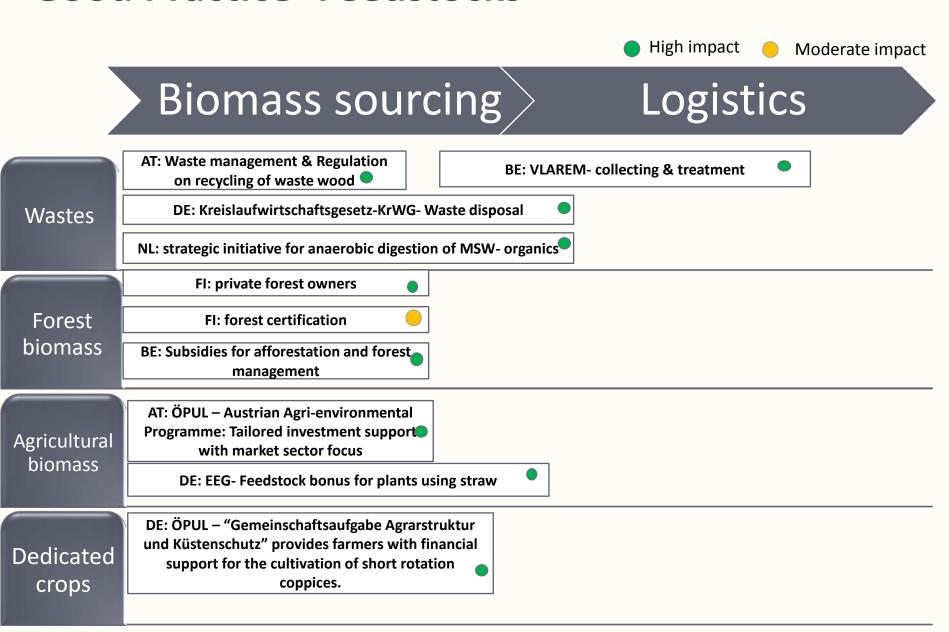
Act on Sustainable Biofuels

SL- RTFO: Substitution Obligation

SL_DESFC: Subsidies

Decree on Renewable Electricity support & SL- EPA: Feed in tariffs

Excise Duties Act


Regulations Financing

What improvements can be made based on good practice?

- The following slides illustrate selected policies from Member States that have had significant positive impact in promoting the use of lignocellulosic biomass
- Based on this Good Practice, recommended new policies are shown (shaded boxes) to complement existing policies

^{*} Policy mapping and respective recommendations are the result of intensive review but as the field is dynamic the authors appreciate there may be missing elements.

Good Practice- Feedstocks

Good Practice- End use sectors High impact Moderate impact Distribution **End Use** Conversion UK: Renewable Heat Initiatives (RHI) AT: Climate and Energy Fund-Subsidy scheme wood heating. NL: Energy Investment Allowance (EIA), tax reductions for boilers Heat ES: BIOMCASA I & II, funding for efficient use of biomass DE: repayment bonus from market program (MAP) and soft loans with low interest rates public sector bank KfW AT: Green Electricity Act & CHP Act: refines scales of applications and target specific sectors and biomass resource types and end uses. DE: Renewable Energy Sources Act 2014 - Act (EEG 2014); Market premium (in EEG § 35); Flexibility premium for CHP existing installations (EEG, § 54) UK:Renewables Obligation (RO) scheme, based on green certificates favouring certain technologies DE: Federal Immission Control Act (BImSchG) DE: Energy Tax Act (EnergieStG): It UK: Renewable Transport Fuel Obligation (RTFO) accounts for transport biofuels and certification system **Transport** FI: Act of Excise Duty on Liquid Fuels, a taxation system, in which each component biofuels of a liquid fuel is taxed separately, based on its energy content and carbon dioxide emission, meaning reduced taxation for biofuels **DE: National Bioeconomy Strategy**

Biobased products

DE: National Bioeconomy Strategy

SE: Swedish Research and Innovation Strategy for a Bio-based Economy

Recommended new policy*: forest

Biomass Supply

Logistics

SI Forest Act

SL National Forest Plan

SL_DGPP: Environmental requirements

SL-RDP: Investment subsidies

Conversion

Distribution

SL-NEEAP: Energy Efficiency Action Plan

SL-NREAP: Renewable Energy Action Plan

SL-ReNEP: Renewable Energy Action Plan

SL- EA: Requirements, Substitution Obligation, Permitting, Zoning

SL_DESFC: Subsidies

Decree on Renewable Electricity support & SL- EPA: Feed in tariffs

End Use

Climate &

Energy Fund: Subsidy

scheme wood

heating

Excise Duties Act

Combined Heat and Power Act

Act on promoted energy sources: Feed in tariffs: introduce premiums for specific diameters cuttings; thinnings, etc.

Standard containing emission limits for wood boilers

Forest Certification

Regulations Financing

^{*}Shaded boxes show recommended new measures

Recommended new policy: agriculture & dedicated crops

Biomass Supply

Logistics

CAP: Slovenian Rural Development Programmes

Conversion

Distribution

End Use

SL-NEEAP: Energy Efficiency Action Plan

SL-NREAP: Renewable Energy Action Plan

SL-ReNEP: Renewable Energy Action Plan

Act on Sustainable Biofuels

SL- RTFO: Substitution Obligation

Climate &
Energy Fund:
Subsidy scheme
heating with
agricultural
residues, pellets
from crops

SL- EA: Requirements, Substitution Obligation, Permitting, Zoning

SL_DESFC: Subsidies

Decree on Renewable Electricity support & SL- EPA: Feed in tariffs

Excise Duties Act

Combined Heat and Power Act

Act on promoted energy sources: Feed in tariffs

introduce premiums for agricultural residues & dedicated crops

Regulation on agricultural raw materials for biofuels and bioliquids

Regulations

Financing

Standards for agricultural biomass

Recommended new policy: wastes

Biomass Supply

Logistics

Distribution

End Use

SL-DOW: Requirements for waste energy

SL_DRNHW: Requirements for waste energy

SL_OPW: Strategy for wastes

SL-NEEAP: Energy Efficiency Action Plan

Conversion

SL-NREAP: Renewable Energy Action Plan

SL-ReNEP: Renewable Energy Action Plan

SL- EA: Requirements, Substitution Obligation, Permitting, Zoning

Act on Sustainable Biofuels

SL- RTFO: Substitution Obligation

SL_DESFC: Subsidies

Decree on Renewable Electricity support & SL- EPA: Feed in tariffs

Excise Duties Act

Standards for biowastes

Feed in tariffs introduce premiums for biowastes

Combined Heat and Power Act

Fixed premiums

Regulations

Financing

Information

Biomethane injection

Conclusions

- Slovenian national lignocellulosic biomass potential is substantial at around 1.5m dry tonnes / year (excluding primary forest harvest), with forestry being the main source.
- The existing policy framework forms a foundation for future support measures to be introduced.
- The study has recommended a number of new targeted laws, regulations, standards and finance mechanisms to help Slovenia realise its potential to contribute to a bio based economy by 2030.

More information on: http://s2biom.alterra.wur.nl/

c.panoutsou@imperial.ac.uk

www.s2biom.eu

